

City of West Allis 7525 West Greenfield Avenue | West Allis, WI 53214

Fire Administration Backup Generator Basis of Design Report

May 2017

Prepared by:

Donohue & Associates, Inc. 125 South Wacker Drive Suite 1850 |Chicago, Illinois 60606 donohue-associates.com

Donohue Project No.: 13021

TABLE OF CONTENTS

Executive	Summary	2
1.1	Introduction	2
1.2	Electrical Design	2
1.3	Design Concept drawings	2
1.4	Construction Cost Opinion	2
1.5	Construction Phasing Plan	2
1.6	Project Schedule	3
1.3 1.4 1.5 1.6	Construction Cost Opinion Construction Phasing Plan Project Schedule	2 2 2

APPENDICES

- Appendix A Design Technical Memorandum Electrical/ Structural
- Appendix B Vendor Information
- Appendix C Construction Cost Opinion
- Appendix D Construction Phasing Plan
- Appendix E Possible Construction Schedule

EXECUTIVE SUMMARY

1.1 INTRODUCTION

This report identifies options for the replacement of the existing backup generator located at the Fire Administration Building; potential design problems and suggested resolutions; confirms design and construction schedules; and, includes an opinion of probable construction cost. This report includes a Design Technical Memorandum – Electrical, Structural and Mechanical (Appendix A) as well as project specific vendor information (Appendix B), a Construction Cost Opinion (Appendix C), a Construction Phasing Plan (Appendix D), and Project Schedule (Appendix E). The next phase of the design, the Plans and Specifications, will proceed per the recommendations of this Report.

The City's primary objective for this project is to replace the existing diesel generator with a natural gas generator.

1.2 ELECTRICAL DESIGN

The Design Technical Memorandum – Electrical, Structural and Mechanical establishes design criteria for a new natural gas generator. The memorandum also presents alternate locations evaluated for the generator to be installed.

The following is a summary of recommendations:

- Install a new generator sized to operate critical loads in the Fire Administration Building and Fire House #1
- Install new natural gas meter and regulator to accommodate increased demand from the addition of the generator
- Install the generator in the same location as the existing due to the structural uncertainty and limited work space on the roof
- Install new intake louver and ventilation duct
- Install new exhaust piping

1.3 DESIGN CONCEPT DRAWINGS

The drawings provided in Appendix B graphically depict major features of the design basis for the generator.

1.4 CONSTRUCTION COST OPINION

Our opinion of probable construction cost for this Basis of Design is \$94k for a generator sized to power the emergency panels in the Fire Administration Building and Fire House #1. The construction cost opinion includes a cost breakdown for the project.

1.5 CONSTRUCTION PHASING PLAN

The Bidding Documents will not dictate specific means and methods for the Work; however, they will define construction sequences and constraints that are necessary to maintain operation during construction. The most significant constraint for the project is to keep the Fire Administration Building

and Fire House #1 operational during the generator replacement. The Construction Phasing Plan presents a sequence of major construction tasks to meet these constraints. The Construction Phasing Plan will be developed in greater detail during subsequent phases of the design to identify more detailed constraints that may be required and to establish the Contract Times to be specified in the Bidding Documents.

1.6 PROJECT SCHEDULE

There is no agency-required compliance schedule for the project. Therefore, the design schedule shown below has been developed to comply with the City's goal to construct the project in the next year.

ACTIVI	ТҮ	COMPLETION
Submit	DRAFT Basis of Design	05/08/2017
Comple Basis o	ete Master Plan / f Design	05/22/2017
Design		
	Pre-final Plans*	07/03/2017
	Bidding Documents	07/17/2017
Bid and	Award	
	Advertisement	August 2017
	Bid Closing/Opening	September 2017
	Award of Contract	October 2017
Constru	uction	
	Notice to Proceed	October 2017
	Substantial Completion	May 2018
	Final Completion	June 2018

*Pre-Final plans will be provided within four (4) weeks of detailed design Notice To Proceed (NTP). Dates assume NTP of June 5, 2017.

The Bid and Award dates and significant Construction completion dates will be refined as the design progresses. The construction completion dates are based on the Possible Construction Schedule prepared for critical construction tasks.

Appendix A

Design Technical Memorandum – Electrical, Structural and Mechanical

Electrical Design Technical Memorandum

Fire Administration and Fire House #1 Backup Generator City of West Allis

 Date:
 May 8, 2017

 To:
 Michael Lewis, Director of Public Works / City Engineer

 Copy:
 Peter Daniels, Principal Design Engineer

 From:
 Mike Stohl, P.E., Project Manager

Purpose

The purpose of this Technical Memorandum is to document the established electrical design basis for the project. The following electrical and structural design basis have been developed for the project:

- Generator Design
- Electrical Design Guidelines
- Structural Evaluation
- Ventilation Requirements

Generator Design

Facility Description

Electrical service for the Fire Administration Building come through a WE Energies (W.E.) owned pole mounted transformer located near the Northeast corner of the building. The transformer steps down the voltage to 208/120V 3 phase 4 wire and connects to metering equipment located on the Northeast side of the building. From the utility meter the conductors enter a 400A, 208/120V, 3 phase, 4 wire Main Distribution Panel (MDP).

Service Entrance and Utility Meter Fire Administration Building

Electrical service for Fire House #1 come through a WE Energies (W.E.) owned pole mounted transformer located near the Northwest corner of the building. The transformer steps down the voltage to 208/120V 3 phase 4 wire and connects to metering equipment located on the Northwest side of the building. From the utility meter the conductors enter a 400A, 208/120V, 3 phase, 4 wire Main Distribution Panel (MDP).

Service Entrance and Utility Meter Fire House #1

The Fire Administration Building has an existing 100 kilowatt (kW) diesel generator located in the garage that provides power to emergency panels located in the Fire Administration Building and Fire House #1. Each building has an Automatic Transfer Switch (ATS) with power and control wiring to start the generator in the event of a power outage. The Fire Administration Building and Fire House #1 have a 150A and 225A ATS respectively.

Existing Generator Located in Garage

Generator Design

- 1. Generator sized equivalent to existing diesel generator will be replaced with a natural gas generator with the same kilowatt rating of 100kW. Natural gas service to the facility will be modified to increase the supply pressure from 7-inches water column to 2-psig and the meter change to allow for the additional gas flow. Supplier has indicated there will be no charge for this meter change.
- 2. Generator Location: A structural analysis was performed on the existing roof above the garage to determine if relocating the generator to the roof is a feasible option. The roof was constructed in 1929 and consists of steel beams supporting a concrete slab. Results of the analysis indicate the existing roof beams would be overstressed with the addition of the new generator. Further locating the generator on the roof will allow limited work space around the enclosure and likely limit the ability to fully open the enclosure doors to 90 degrees. Therefore, Donohue does not recommend relocating the generator to the roof above the garage.
- 3. Generator Airflow Considerations: Existing space has inadequate ventilation to reject both the radiator heat and the radiated heat from the engine. It is recommended that the new generator be installed with its radiator ducted to the building exterior through the existing wall louver. A new intake air louver should also be provided to allow the required radiator airflow into the space which will require increasing the size of the existing opening.
- 4. Generator Exhaust: The existing exhaust piping has significant rust as well as the brackets securing it. It is recommended to replace the exhaust piping and brackets.

Conclusions

It is recommended to replace the existing generator with a new generator with the same kilowatt rating to power the emergency panels for the Fire Administration Building and Fire House #1. Structural review has eliminated the feasibility of installing the generator on the roof due to insufficient support strength of the supporting structure. To avoid adding additional capital costs as well as allow for straight forward construction sequencing and minimize downtime, it is recommended to install the new generator in the same location as the existing with ducted radiator discharge, a new intake air louver and new exhaust piping.

Electrical Design

General Design

- 1. Applicable Codes
 - a. National Electrical Code (NEC)
 - b. NFPA 110: Standard for Emergency and Standby Power Systems
 - c. Wisconsin Administrative Code, Department of Safety and Professional Services (SPS), Chapter 316 – Electrical
- 2. Backup Generator
 - a. Sized equivalent to the existing generator that supplies power to the emergency panels at the Fire Administration Building and Fire House #1.
 - b. Natural gas generator complete with control and auxiliary equipment as well as an integrated electrical panel with dual 200A and 250A breaker for the Fire Administration Building and Fire House #1.
 - c. Skid mounted located indoor at east end of the garage.
 - d. Manufactured by Cummins Power Generation, MTU Onsite Energy, Caterpillar, or Kohler Power Systems.
- 3. Conduit
 - a. Interior Conduit:
 - 1. Exposed Dry Locations Galvanized rigid steel conduit:
 - 2. Flexible Conduit Liquidtight flexible metal conduit.
 - b. Minimum Size: ¾ inch
 - c. Threaded, no set screw or indentor type fittings
- 4. Conductors (600V and less)
 - a. Branch Circuits Single conductor THHN/THWN (90°C) copper conductors.
 - b. Feeders and Conduit Duct Banks Single conductor XHHW-2 copper conductors.
 - c. Minimum size #12 AWG.

Appendix B

Vendor Information

Specification sheet

Spark-ignited generator set

45–100 kW standby EPA emissions

Description

Cummins Power Generation generator sets are fully integrated power generation systems providing optimum performance, reliability and versatility for stationary standby applications.

Features

Gas engine - Rugged 4-cycle Cummins QSJ5.9G spark-ignited engine delivers reliable power. The electronic air/fuel ratio control provides optimum engine performance and fast response to load changes.

Alternator - Several alternator sizes offer selectable motor starting capability with low reactance 2/3 pitch windings, low waveform distortion with non-linear loads and fault clearing short-circuit capability.

Control system - The PowerCommand[®] 1.1 electronic control is standard equipment and provides total generator set system integration including automatic remote starting/stopping, precise frequency and voltage regulation, alarm and status message display, output metering, autoshutdown at fault detection and NFPA 110 Level 1 compliance. The PowerCommand[®] 2.3 control is also optional and is UL 508 Listed and provides AmpSentry[®] protection. **Cooling system** - Standard cooling package provides reliable running at up to 50 °C (122 °F) ambient temperature.

Enclosures - The aesthetically appealing enclosure incorporates special designs that deliver one of the quietest generators of its kind. Aluminum material plus durable powder coat paint provides the best anti-corrosion performance. The generator set enclosure has been evaluated to withstand 180 MPH wind loads in accordance with ASCE7-10. The design has hinged doors to provide easy access for service and maintenance.

NFPA - The generator set accepts full rated load in a single step in accordance with NFPA 110 for Level 1 systems.

Warranty and service - Backed by a comprehensive warranty and worldwide distributor and dealer network.

	Natural Gas		Pro		
	Standb	y (60 Hz)	Standb	Standby (60 Hz)	
Model	kW	kVA	kW	kVA	60 Hz
C45 N6	45	56	45	56	NAD-6093-EN
C50 N6	50	63	50	63	NAD-6094-EN
C60 N6	60	75	60	75	NAD-6095-EN
C70 N6	70	88	70	88	NAD-6096-EN
C80 N6	80	100	80	100	NAD-6097-EN
C100 N6	100	125	100	125	NAD-6098-EN

Our energy working for you.™

©2015 Cummins Power Generation Inc. | NAS-6092b-EN (8/16)

Generator set specifications

Governor regulation class	ISO 8528 Part 1 Class G3
Voltage regulation, no load to full load	± 1.0%
Random voltage variation	± 1.0%
Frequency regulation	Isochronous
Random frequency variation	± 0.25% @ 60 Hz
Radio frequency emissions compliance	Meets requirements of most industrial and commercial applications

Engine specifications

Design	Naturally aspirated or turbo charged (varies by generator set model)
Bore	102.1 mm (4.02 in)
Stroke	119.9 mm (4.72 in)
Displacement	5.9 liters (359 in ³)
Cylinder block	Cast iron, in-line 6 cylinder
Battery capacity	850 amps at ambient temperature of 0 °F to 32 °F (-18 °C to 0 °C)
Battery charging alternator	52 amps
Starting voltage	12 volt, negative ground
Lube oil filter type(s)	Spin-on with relief valve
Standard cooling system	50 °C (122 °F) ambient cooling system
Rated speed	1800 rpm

Alternator specifications

Design	Brushless, 4 pole, drip proof, revolving field
Stator	2/3 pitch
Rotor	Direct coupled, flexible disc
Insulation system	Class H per NEMA MG1-1.65
Standard temperature rise	120 °C (248 °F) standby
Exciter type	Torque match (shunt) with PMG as option
Alternator cooling	Direct drive centrifugal blower
AC waveform total harmonic distortion	< 5% no load to full linear load, < 3% for any single harmonic
Telephone influence factor (TIF)	< 50 per NEMA MG1-22.43
Telephone harmonic factor (THF)	<3%

Available voltages

1-phase	3-phase				
• 120/240	• 120/208	• 120/240	• 277/480	• 347/600	• 127/220

Generator set options

Fue system

- Single fuel natural gas or propane vapor, field selectable
 Dual fuel natural gas and propane
- vapor auto changeover Low fuel gas pressure warning

Engine

- Engine air cleaner
- □ Shut down low oil pressure
- Extension oil drain Engine oil heater

Alternator

- □ 120 °C temperature rise alternator 105 °C temperature rise alternator
- D PMG

Generator set accessories

- Coolant heaters 1000W / 1500W Ø 2 Battery rack, standard/larger battery
- Battery heater kit
- Engine oil heater
- Remote control displays
- Auxiliary output relays (2)
- Auxiliary configurable signal inputs (8) and relay outputs (8) Annunciator - RS485

AC output analog meters Stop switch - emergency

□ Auxiliary output relays (2) Auxiliary configurable signal

Z Alternator heater, 120V

output alternator

□ Reconnectable full 1 phase

inputs (8) and relay outputs (8)

Electrica

Contro

- One, two or three circuit breaker
- 80% rated circuit breakers
- □ 100% rated LSI circuit breakers Battery charger

Enclosure

- □ Aluminum enclosure Sound Level 1 or Level 2, sandstone or green color
- □ Aluminum weather protective enclosure with muffler installed, green color

□ Extension – coolant drain

- Coolant heater options:

Exhaust system Exhaust connector NPT

Exhaust muffler mounted

Generator set application

- Base barrier elevated genset
- Battery rack, standard battery
- □ Battery rack, larger battery
- Radiator outlet duct adapter

Warranty

- Base warranty 2 year/400 hours, standby
- □ 3 year standby warranty options
- □ 5 year standby warranty options
- Remote monitoring device PowerCommand 500/550 \square
 - Battery charger stand-alone, 12V
- Circuit breakers
 - Enclosure Sound Level 1 to Sound Level 2 upgrade kit
- Base barrier - elevated generator set 2
- Mufflers industrial, residential or critical Alternator PMG
- - Alternator heater

<4 °C (40 °F) – cold weather
 <-17 °C (0 °F) – extreme cold

- **Cooling system** Shutdown – Iow coolant level Warning – Iow coolant level

- configurations

Control system PowerCommand 1.1

PowerCommand control is an integrated generator set control system providing voltage regulation, engine protection, operator interface and isochronous governing (optional). Major features include:

- Battery monitoring and testing features and smart starting control system.
- Standard PCCNet interface to devices such as remote annunciator for NFPA 110 applications.
- Control boards potted for environmental protection.
- Control suitable for operation in ambient temperatures from -40 °C to +70 °C (-40 °F to +158 °F) and altitudes to 5000 meters (13,000 feet).
- Prototype tested; UL, CSA, and CE compliant.
- InPower[™] PC-based service tool available for detailed diagnostics.

Operator/display panel

- Manual off switch
- Alpha-numeric display with pushbutton access for viewing engine and alternator data and providing setup, controls and adjustments (English or international symbols)
- LED lamps indicating generator set running, not in auto, common warning, common shutdown, manual run mode and remote start
- Suitable for operation in ambient temperatures from -40 $^{\circ}\text{C}$ to +70 $^{\circ}\text{C}$
- Bargraph display (optional)

AC protection

- Over current warning and shutdown
- Over and under voltage shutdown
- Over and under frequency shutdown
- Over excitation (loss of sensing) fault
- · Field overload

Engine protection

- Overspeed shutdown
- Low oil pressure warning and shutdown
- High coolant temperature warning and shutdown
- Low coolant level warning or shutdown
- Low coolant temperature warning
- High, low and weak battery voltage warning
- Fail to start (overcrank) shutdown
- Fail to crank shutdown
- Redundant start disconnect
- Cranking lockout
- Sensor failure indication
- Low fuel level warning or shutdown

Alternator data

- Line-to-line and Line-to-neutral AC volts
- 3-phase AC current
- Frequency
- Total kVa

Engine data

- DC voltage
- Lube oil pressure
- Coolant temperature
- Engine speed

Other data

- Generator set model data
- Start attempts, starts, running hours
- Fault history
- RS485 Modbus® interface
- Data logging and fault simulation (requires InPower service tool)

Digital governing (optional)

- Integrated digital electronic isochronous governor
- Temperature dynamic governing

Digital voltage regulation

- Integrated digital electronic voltage regulator
- 2-phase line-to-line sensing
- Configurable torque matching

Control functions

- Time delay start and cooldown
- Cycle cranking
- PCCNet interface
- (2) Configurable inputs
- (2) Configurable outputs
- Remote emergency stop
- Automatic transfer switch (ATS) control
- Generator set exercise, field adjustable

Options

- □ Auxiliary output relays (2)
- Remote annunciator with (3) configurable inputs and (4) configurable outputs
- D PMG alternator excitation
- PowerCommand 500/550 for remote monitoring and alarm notification (accessory)
- Auxiliary, configurable signal inputs (8) and configurable relay outputs (8)
- Digital governing
- □ AC output analog meters (bargraph)
 - Color-coded graphical display of:
 - 3-phase AC voltage
 - 3-phase current
 - Frequency
 - kVa
- □ Remote operator panel
- PowerCommand[®] 2.3 control with AmpSentry[®] protection

Ratings definitions

Emergency standby power (ESP):

Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Limited-time running power (LTP):

Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.

Prime power (PRP):

Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.

Base load (continuous) power (COP):

Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

This outline drawing is for reference only. See respective model data sheet for specific model outline drawing number.

Do not use for installation design

	Dim "A"	Dim "B"	Dim "C"	Set Weight*wet	
Model	mm (in.)	mm (in.)	mm (in.)	kg (lbs.)	
		Open Set			
C45 N6	2489 (98)	1016 (40)	1473 (58)	989 (2180)	
C50 N6	2489 (98)	1016 (40)	1473 (58)	989 (2180)	
C60 N6	2489 (98)	1016 (40)	1473 (58)	1103 (2431)	
C70 N6	2489 (98)	1016 (40)	1473 (58)	1111 (2449)	
C80 N6	2489 (98)	1016 (40)	1473 (58)	1173 (2587)	
C100 N6	2489 (98)	1016 (40)	1473 (58)	1233 (2719)	
	'	Weather Protective Enclosur	е		
C45 N6	2489 (98)	1016 (40)	1473 (58)	1070 (2359)	
C50 N6	2489 (98)	1016 (40)	1473 (58)	1070 (2359)	
C60 N6	2489 (98)	1016 (40)	1473 (58)	1184 (2610)	
C70 N6	2489 (98)	1016 (40)	1473 (58)	1192 (2628)	
C80 N6	2489 (98)	1016 (40)	1473 (58)	1255 (2766)	
C100 N6	2489 (98)	1016 (40)	1473 (58)	1315 (2898)	
	Sou	nd Attenuated Enclosure Le	vel 1	-	
C45 N6	3023 (119)	1016 (40)	1473 (58)	1114 (2455)	
C50 N6	3023 (119)	1016 (40)	1473 (58)	1114 (2455)	
C60 N6	3023 (119)	1016 (40)	1473 (58)	1227 (2706)	
C70 N6	3023 (119)	1016 (40)	1473 (58)	1236 (2724)	
C80 N6	3023 (119)	1016 (40)	1473 (58)	1298 (2862)	
C100 N6	3023 (119)	1016 (40)	1473 (58)	1358 (2994)	
	Sou	nd Attenuated Enclosure Lev	vel 2		
C45 N6	3454 (136)	1016 (40)	1473 (58)	1127 (2485)	
C50 N6	3454 (136)	1016 (40)	1473 (58)	1127 (2485)	
C60 N6	3454 (136)	1016 (40)	1473 (58)	1241 (2736)	
C70 N6	3454 (136)	1016 (40)	1473 (58)	1249 (2754)	
C80 N6	3454 (136)	1016 (40)	1473 (58)	1312 (2892)	
C100 N6	3454 (136)	1016 (40)	1473 (58)	1372 (3024)	

* Weights above are average. Actual weight varies with product configuration.

Our energy working for you.™

©2015 Cummins Power Generation Inc. | NAS-6092b-EN (8/16)

Codes and standards

Codes or standards compliance may not be available with all model configurations - consult factory for availability.

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

North America 1400 73rd Avenue N.E. Minneapolis, MN 55432 USA

Phone 763 574 5000 Fax 763 574 5298

Our energy working for you."

©2015 Cummins Power Generation Inc. All rights reserved. Cummins Power Generation and Cummins are registered trademarks of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you." are trademarks of Cummins Power Generation. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAS-6092b-EN (8/16)

Generator Set Data Sheet

Model:	C100 N6
Frequency:	60 Hz
Fuel type:	Natural gas/propane
kW rating:	100 natural gas standby
•	100 propane standby

Emissions level: EPA Emissions

Fuel consumption	Natura Standl kW (k)	al gas by /A)			Propai Standi kW (k\	ne by /A)		
Ratings	100 (12	5)			100 (12	5)		
Load	1/4	1/2	3/4	Full	1/4	1/2	3/4	Full
scfh	549.6	805.4	1050.8	1317.7	207.5	311.8	411.2	518.7
m³/hr	15.6	22.8	29.8	37.3	5.9	8.8	11.7	14.7

Engine	Natural gas Standby rating	Propane Standby rating				
Engine model	QSJ5.9G-G3	QSJ5.9G-G3				
Configuration	Cast Iron, In line, 6 cylinder	Cast Iron, In line, 6 cylinder				
Aspiration	Turbocharged and aftercoo	Turbocharged and aftercooled				
Gross engine power output, kWm (bhp)	122 (163.9)	122 (163.9)				
BMEP , kPa (psi)	1381.0 (200.3)					
Bore, mm (in)	102.1 (4.02)					
Stroke, mm (in)	119.9 (4.72)	119.9 (4.72)				
Rated speed, rpm	1800	1800				
Piston speed, m/s (ft/min)	7.2 (1416)	7.2 (1416)				
Compression ratio	8.5:1	8.5:1				
Lube oil capacity, L (qt)	14.2 (15)	14.2 (15)				
Overspeed limit, rpm	2250	2250				

Fuel supply pressure

Minimum operating pressure, kPa (in H ₂ O)	1.5 (6)
Maximum operating pressure, kPa (in H ₂ O)	3.5 (14)

Air

Combustion air, m ³ /min (scfm)	8.4 (297.8)	8.5 (298.5)
Maximum normal duty air cleaner restriction, kPa (in H_2O)	0.4 (1.5)	0.4 (1.5)
Maximum heavy duty air cleaner restriction, kPa (in H ₂ O)	3.7 (15)	3.7 (15)

Exhaust

Exhaust flow at set rated load, m ³ /min (cfm)	27.3 (965)	25.7 (908.7)
Exhaust temperature at set rated load, °C (°F)	635.2 (1175.4)	645.7 (1194.3)
Maximum back pressure, kPa (inH ₂ O)	8.5 (34.1)	8.5 (34.1)

Standard set-mounted radiator cooling	Natural gas Standby rating	Propane Standby rating
Ambient design, °C (°F)	50 (122)	50 (122)
Fan load, kWm (HP)	9.0 (12)	9.0 (12)
Coolant capacity (with radiator), L (US gal)	16 (4.2)	16 (4.2)
Cooling system air flow, m ³ /min (scfm)	218.0 (7700)	218.0 (7700)
Total heat rejection, MJ/min (Btu/min)	8.9 (8428)	8.9 (8428)
Maximum cooling air flow static restriction, kPa (inH ₂ O)	0.12 (0.5)	0.12 (0.5)
Weights	Natural gas	Propane

	•	
Unit dry weight kg (lb)	1276 (2812)	1276 (2812)
Unit wet weight kg (lb)	1315 (2898)	1315 (2898)

Note: Weights represent a set with standard features. See outline drawing for weights of other configurations.

Derating factors Natural gas

Natural yas	
Standby	Engine power available up to 488 m (1600 ft) at ambient temperatures up to 25°C (77°F). Above these elevations derate at 4% per 305m (1000ft) and 2% per 10°C above 25°C (77°F).

Propane

|--|

Ratings definitions

Emergency standby power	Limited-time running power	Prime power (PRP)	Base load (continuous)
(ESP)	(LTP)		power (COP)
Applicable for supplying power to varying electrical load for the duration of power interruption of a reliable utility source. Emergency Standby Power (ESP) is in accordance with ISO 8528. Fuel Stop power in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power to a constant electrical load for limited hours. Limited Time Running Power (LTP) is in accordance with ISO 8528.	Applicable for supplying power to varying electrical load for unlimited hours. Prime Power (PRP) is in accordance with ISO 8528. Ten percent overload capability is available in accordance with ISO 3046, AS 2789, DIN 6271 and BS 5514.	Applicable for supplying power continuously to a constant electrical load for unlimited hours. Continuous Power (COP) is in accordance with ISO 8528, ISO 3046, AS 2789, DIN 6271 and BS 5514.

Alternator data

Alternator dat	a							Full single phase output, reconnectable			
Standard alternators	nators Natural gas/ single phase three phase table table										
Maximum temperatu above 40 °C ambient	ire rise	120 °C	120 °C	°C 120 °C 120 °C		120 °C 120 °C 120 °C 120		120 °C	120 °C	120 °C	
Feature code		BB90-2	B986-2	B946-2	B943-2	B952-2	BB86-2	BB88-2			
Alternator data sheet nur	nber	ADS-207	ADS-207	ADS-207	ADS-207	ADS-207	ADS-207	ADS-209			
Voltage ranges		120/240	120/240	120/208	277/480	347/600	127/220	120 - 480			
Voltage feature code		R104-2	R106-2	R098-2	R002-2	R114-2	R020-2	Varies by voltage			
Surge kW		98.7	102.7	102.7	103.9	103.9	103.2	Varies by voltage			
Motor starting kVA (at	Shunt	360	360	360	360	360	360	516			
90% sustained voltage)	PMG	423	423	423	423	423	423	607			
Full load current amps at	standby rating	417	301	347	150	120	328	Varies by voltage			

Optional alternators improved starting c	for pability	Natural gas/ propane single phase table		Natu	ıral gas/pro three phas table	opane Se		Full single phase output, reconnectable
Maximum temperatu above 40 °C ambient	ire rise	105 °C	105 °C	105 °C	105 °C	105 °C	105 °C	
Feature code Alternator data sheet numbe Voltage ranges		BB91-2	BB94-2	BB93-2	BB95-2	BB92-2	BB85-2	
	nber	ADS-208	ADS-208	ADS-208	ADS-207	ADS-207	ADS-207	
		120/240	120/240	120/208	277/480	347/600	127/220	
Voltage feature code		R104-2	R106-2	R098-2	R002-2	R114-2	R020-2	Not available
Surge kW		100.1	104.5	104.5	103.9	103.9	103.2	
Motor starting kVA (at	Shunt	422	422	422	360	360	360	
90% sustained voltage)	PMG	497	497	497	423	423	423	
Full load current amps at	standby rating	417	301	347	150	120	328	

Warning: Back feed to a utility system can cause electrocution and/or property damage. Do not connect to any building's electrical system except through an approved device or after building main switch is open.

©2015 Cummins Power Generation Inc Cummins Power Generation and Cummins are registered trademark of Cummins Inc. PowerCommand, AmpSentry, InPower and "Our energy working for you" are trademarks of Cummins Power Generation. Other company, product, or service names may be trademarks or service marks of others. Specifications are subject to change without notice. NAD-6098a-EN (08/15)

power.cummins.com

Drawing Name: A051E745 Revision: A Part Name: A051E744 Revision: A Sheet 1 of 3

Drawing Name: A051E745 Revision: A Part Name: A051E744 Revision: A Sheet 2 of 3 Appendix C

Construction Cost Opinion

City of West Allis

Fire Administration Backup Generator Replacement

INITIAL COST ESTIMATE

<u>General Description</u> Replacement of backup generator at the Fire Administration Building; generator sized equivalent to existing.

ITEM	Units	Quantity	Unit Cost (\$)	Initial Cost (\$)
Electrical				
100 kW Generator	Each	1	33,600	33,600
Conduit	Lump Sum	1	1,000	1,000
Wire	Lump Sum	1	3,200	3,500
Removals	Lump Sum	1	3,600	3,600
Mechanical				
Natural Gas Piping	Lump Sum	1	3,750	3,750
Ductwork and Louvers	Lump Sum	1	11,000	11,000
Exhaust Piping	Lump Sum	1	1,200	1,200
Subtotal				57,650
Contingency			30%	17,295
Subtotal				74,945
Contractor Overhead & Profit			25%	18,736
Total Construction Cost				93,681

Appendix D

Construction Phasing Plan

Construction Phasing Plan Memorandum

WEST ALLIS

Fire Administration and Fire House #1 Backup Generator Replacement City of West Allis

Date:	May 8, 2017
То:	Michael Lewis, Director of Public Works / City Engineer
Сору:	Peter Daniels, Principal Design Engineer
From:	Mike Stohl, P.E., Project Manager

The Bidding Documents will not dictate specific means and methods for the Work; however, they will define construction sequences and constraints that are necessary to maintain power to the Fire Administration Building and Fire House #1 during construction. It will be necessary to remove the existing generator and install the new generator and associated equipment efficiently to limit the amount of time that Administration Building and Fire House #1 are without emergency backup power.

This Construction Phasing Plan presents a sequence of major construction tasks to meet these constraints. Generally, only major tasks considered to be on the critical path to establish the specified Contract Times are identified. These will be developed in greater detail during subsequent phases of the design to identify more detailed constraints that may be required and to establish the Contract Times to be specified in the Bidding Documents.

Replacement Phasing for Existing Generator

- 1. Removal of existing generator.
- 2. Removal of existing fan and louver.
- 3. Site preparation and installation of fan, duct and louver.
- 4. Installation of conduit, conductors and control wires from each transfer switch to the generator.
- 5. Installation and testing of new generator.
- 6. Test transfer switches and generator as a whole system.

Appendix E

Possible Construction Schedule

TASKS						201	7									.			<u> </u>												2018
ID	h A E B	ME	B M	Y E I	Jun 3 M	e E f	Ju B M	IY ALE	Auc B N	just A E	bter B M	mb E	Octo B M	ber E	over B M	nb E	ece B	ME	Jan	uar M E	y et B	orua M	ar r E E	viar 3 M	ch E	Ap B M	rii 1 E	Ma B M	Y E I	June B M	Э ЕВ
Meet with City to discuss report			\$			1 - 1 -												<u> </u>	1 - 1										1 - 1		
City review of Report		05/0	9 💼	05/	19																										
Complete Basis of Design		0	5/22	•																											
Prepare Bidding Documents		(05/23	-			07	/03																							
5 Meet with City to discuss pre-final documents					07/0)3 🔶																									
b Internal document QC and incorporation					07,	/05	0	7/07																							
7 Meet with City to review bidding documents					07	7/10																									
B Incorporate City Comments					0)7/11	1	07/	14																						
9 Submit bidding documents to City						07/1	7	•																							
0 Bid Advertisement							0	8/07	♦																						
I1 Bid Opening									0	9/04	_	- (09/25	5																	
12 Notice of Award											10/0	02 <	>																		
13 Notice to Proceed												10/	16 🔶																		
14 Shop Drawing Prep (by Contractor)												10	/17 🧯			11/1	3														
15 Shop Drawing Reviews														11/	14 🧲			12/	12												
6 Equipment Production (Based on 6 week LT)	_															12/1	13 (•	: 03/1	2					
7 Equipment Install																						0	3/13	3						05/3	1
18 Project Close-out																													06/1	5 🔶	